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A system of IV electrons

HY(ry,...,ry) = E¥(ry,....,rN)

_,ZA +ZV r; +Z|I'z—1‘g| U(ry,..,ry) = EU(ry,...,ry)

i#]
Many-body WF storage requirements are prohibitive

(Fgrid points)N

Map onto “one-electron” theory

W(ry, .., tn) = {P1(r), Pa(r), ..., Yn(r)}

such as Hohenberg-Kohn-Sham density functional theory

M. Marsman



Do not need ¥(r1,...,ry), just the density p(r):

Elp] = Ts[{eilpl}] + Eulpl + Exclpl + Ezlp] + U[Z]

= N . = S ()2 E _1 Md dr’
U(ry,orn) = [[wilr)  p(r) = [vi(x)| ulpl = 5 v — ] T
One-electron Kohn-Sham equations

(—%A + Vz(r) + Vi [pl(r) + VXC[PKF))%(I“) — en(r)

Hartree Exchange-Correlation
/
Vel = [ 2D a Beld = i) =2

Per definition: Exc = E — Ts — Eg — Eexs

In practice: Exchange-Correlation functionals are modelled on the uniform
electron gas (Monte Carlo calculations): e.g., local density approximation
(LDA).
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@ Translational invariance implies the existence of a good quantum
number, usually called the Bloch wave vector k. All electronic
states can be indexed by this quantum number

|Pi)

@ In a one-electron theory, one can introduce a second index,
corresponding to the one-electron band n,

‘wnk>

@ The Bloch theorem states that the one-electron wavefunctions obey
the equation:

wnk(r + R) = wnk(r)eikR

where R is any translational vector leaving the Hamiltonian
invariant.

@ k is usually constrained to lie within the first Brillouin zone in
reciprocal space.
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@ The evaluation of many key quantities, e.g. charge density,
density-of-states, and total energy) requires integration over the
first BZ. The charge density p(r), for instance, is given by

o) = o > / Do) Pk

@ fnx are the occupation numbers, i.e., the number of electrons that
occupy state nk.

@ Exploiting the fact that the wave functions at k-points that are
close together will be almost identical, one may approximate the
integration over k by a weighted sum over a discrete set of points

p(r) =D wie frc|mic(r) [Pk,
n k

where the weights wy sum up to one.
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The intractable task of determining ¥(ry,...,ry) (for N ~ 10?3) has
been reduced to calculating ¢,k (r) at a discrete set of points {k} in the
first BZ, for a number of bands that is of the order of the number of

electrons per unit cell.
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@ The total energy
Elp AR, Z}] = Ts[{¢nx[pl}] + Eulp.{R, Z}] + Exc[p] + U{R, Z})
@ The kinetic energy

Lol = 30 3 wnfus k] — 5 Alis)
k

n

@ The Hartree energy

Bulp, {R, Z}] = //pez ez () 1t

—r'|
where pez(r) = p(r) + >, Zid(r —
@ The electronic charge density

=D wicfukclthnic(r) [Pdk,
n k

@ The Kohn-Sham equations

(—32+ Virlpez) () + Vaelpl()) () = €oncinac(r)

@ The Hartree potential

Valper)(w) = [ 220 0
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@ Introduce the cell periodic part u,) of the wavefunctions

Uk (r) = Uni(r)e™™
with unk(r + R) = upk(r).

@ All cell periodic functions are now written as a sum of plane waves
1 .
— G G+k)r
unk(r) - W Z C’Gnkel Y ¢nk( ) QI/Z Z CGnkel( )x
G

I‘) — Z pGeiGr V(I‘) _ Z VGeiGr
G G
@ In practice only those plane waves |G + k| are included for which

1
§‘G + k‘z < Ecutoff

M. Marsman



real space reciprocal space

G

cut
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real space reciprocal space

G
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Why use plane waves?

@ Historical reason: Many elements exhibit a band-structure that can
be interpreted in a free electron picture (metallic s and p elements).
Pseudopotential theory was initially developed to cope with these
elements (pseudopotential perturbation theory).

@ Practical reason: The total energy expressions and the Hamiltonian
H are easy to implement.

@ Computational reason: The action H|v) can be efficiently evaluated
using FFT's.
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Evaluation of H|y,k)
(-58+V®) vurto)

using the convention

1 2 r
< |G + k> Ql/2 € (@+k) — <G + k|7/1nk> - CGnk

@ Kinetic energy:
1 1
(G+k|l - §A\wnk> = §|G+k\2CGnk Nxprw

@ Local potential: V = Vu[p| + Vic[p] + Vext
) Exchange-correlation: easily obtained in real space Vic,r = Vic|[pr]
FFT to reciprocal space {Vic,r} — {Vic,c}
Hartree potential: Poisson equation in reciprocal space Vu,g = Gz PG

)
)
) add all contributions Vg = Vi, + Ve, + Vext,a
)
T

FFT to real space {Va} — {V:}
he action

—iGr

<G + k|v|wnk NFFT lOg NFFT
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The charge density

cht
N -——
7 N / S
( ] - X
\ /
= FFT
v v v
Gog r ¢ '
cut
— = /TN
\
\ N
- =
/
FFT
PG Pr
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The action of the local potential

2cht
TN AN
\
\ i N
— — A X
4n & FFT
B @ B
PG VG Vr Wy

Rr (residual vector)

Yo




The PAW method

The number of plane waves needed to describe
@ tightly bound (spatially strongly localized) states

@ the rapid oscillations (nodal features) of the wave functions near the
nucleus

exceeds any practical limit, except maybe for Li and H.

The common solution:

@ Introduce the frozen core approximation:
Core electrons are pre-calculated in an atomic environment and kept
frozen in the course of the remaining calculations.

@ Use pseudopotentials instead of exact potentials:
) Norm-conserving pseudopotentials
) Ultra-soft pseudopotentials
) The Projector-Augmented-Wave (PAW) method
[P.E. Blochl, Phys. Rev. B 50, 17953 (1994)]
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|tn) = |wn+2|¢>z |6:)) (Bl )

o |{Z;n> is a pseudo wave function expanded in plane waves
® |¢), |¢:), and |p;) are atom centered localized functions

@ the all-electron partial waves |¢;) are obtained as solutions to the
radial scalar relativistic Schrodinger equation for the spherical
non-spinpolarized atom

(5 + ven)ln) = ilo)

@ a pseudization procedure yields

|6s) — |) Veff — Ueff <l7i|$j> = 0yj
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@ the pseudo partial waves |¢;) obey

(= 58+Ter+ 315D ) 6w = ex (14 17)Qu 73l ) )

ij
@ with the socalled PAW parameters:
Qij = (ile;) — (9il@;)
1 ~ 1 o~
Dij = (il = 5A +ve|d;) — (9il = 5A + Vert|d)

The all-electron and pseudo eigenvalue spectrum is identical, all-electron
scattering properties are reproduced over a wide energy range.
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(—5A -+ ver)l6) = eildi)

7/

- %A + e+ ) |ﬁk>Dkz<l7l|) |6:) = & (1 +> |ﬁk>QM<§z|) |6:)
kl kl

\___‘ i :-
A £
5 ?d\

B
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N CE =
T mr
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o
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1st s-channel: ¢;
Mn 4s "bound” state 0.

2nd s-channel: €5 1.
Mn s "non-bound” state 0.

Frozen core approximation:

Vet [pu] = vi[po] + vE [Pz + Vaclpo + 0] pu(r) = Z ailpi(r)[?

Vott[Pv] = vE[Pu] + vE[PZC] + Vac[Po + Pe] pu(r) = Z ai|$i(r)|2
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@ Character of wavefunction: c¢jpe = <ﬁlme|1/~)n>

W) = W) = S lmedeme + 3 imedeime
~ 0100
. @ L0 OO0

pseudo pseudo-onsite AE-onsite
@ Same trick works for
@ Wavefunctions ® Kinetic energy

. @ Exchange correlation ener,
o Charge density ° Hartreegenergy ®
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The kinetic energy

@ For instance, the kinetic energy is given by

1
Eyin = ZfTL('L/}n‘ - §A|"/]n>
@ By inserting the transformation (i = lme)

¥n) = \wn+2|¢z |6:)) (iln)

into Eyin one obtains: Fyin = E—FE! + E! (assuming completeness)

S il = 5AI) = 373 (il = 5 A+ 303 il - 5 Al)

site (4,5) site (i,5)

E Bl El
@ p;; is an on-site density matrix:

Pij = Z fn<1/~1n |15z‘><13j |1;n>
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@ For any (quasi) local operator A there exists a PS operator

A=A+ X I ((eilAles) — (3:1416,)) (5|

so that

W|Alp) = (|Al)

@ For instance the PS operator that corresponds to the density operator
|r){r| is given by

r|+2|pl( ) (xl5) = (Bilr) (x165) ) (5|

and the density

W) (elw) = @Il + > (W15 (40ule)irls) — (Gilr)(xlds) ) (Bsl)

= B -7 () + ')

@ Non-local operators are more complicated
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The Hartree energy

@ The pseudo-wavefunctions do not have the same norm as the AE
wavefunctions inside the spheres

@ To deal with long range electrostatic interactions between spheres a
soft compensation charge p is introduced (similar to FLAPW).

AE pseudo + compens. pseudo+comp. onsite AE-onsite

@ Hartree energy becomes: Ey = E — E' + E*

Eulp+pl— Y _ Eulp' +p'1+ > Eulp']

sites sites

p' one-center pseudo charge p' one-center compensation
charge
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PAW energy functional

Total energy becomes a sum of three terms: E = E + E' — E*

E

El

- 1 -
Bulp+ 1+ [ vulpz) (50) + o) &' + U(R, Ziow)
S { st - 5l + Bl A 54 A+

sites ™ (i,5)

Eg[p* +p] + /
Q,

S { S puted - Al + Bl o +

sites ™ (i,5)

Eulp ]+ [ onlpzls' @ d3r}

onlpzd (7 w) + pte) e}
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@ F is evaluated on a regular grid
Kohn-Sham functional evaluated in a plane wave basis set

with additional compensation charges to account for the incorrect
norm of the pseudo-wavefunction (very similar to ultrasoft
pseudopotentials).

p=3 Fthntiy pseudo charge density
p compensation charge

@ E' and E' are evaluated on radial grids centered around each ion.
Kohn-Sham energy evaluated for basis sets {¢;} and {¢;}

these terms correct for the shape difference between the pseudo and
AE wavefunctions.

@ No cross-terms between plane wave part and radial grids exist.
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@ The pseudo wave functions |t,,) (plane waves!) are the
self-consistent solutions of

(—32+ Vet 3 IFDi+) 55l ) 190) = e (143 P Qus 1) 1)

j
1 ~ 1 1 1T
Dy = (1] = 5+ vlalpd)|és) — (i = 3+ Tal7E116;)

py(r) = Zﬂij (ilr)(rlp;)  pa(r) = ZPU@HF)@@)

@ If the partial waves form a complete basis within the PAW spheres,
then the all-electron wave functions |¢,,) are orthogonal to the core
states!
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Accuracy

Subset of G2-1 test set: Deviation PAW w.r.t. GTO, in [kcal /mol].
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Accuracy

Relative PBE bond

lengths of Cly, CIF, and HCI for various GTO basis
sets specified with respect to plane-wave results:

1.03
1.025
¢

1.02
1.015

4
1.01

1.005

QO Cl, rel. bond length
[ £ CIF rel. bond length
A AHCI rel. bond length

DZ

N.B.: aug-cc-

aug-cc-pVXZ (X= D, T,Q,5)

pV5Z basis set for Cl contains 200 functions!
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W’n) = |1Ln> + Z (|¢lme> - |¢lm5>) <ﬁl7ne|1/;n>

lme

-] ‘1;n> is the variational quantity of the PAW method.

@ The PAW method is often referred to as an all-electron method.
Not in the sense that all electrons are treated explicitly, but in the
sense that the valence electronic wave functions are kept orthogonal
to the core states.

M. Marsman



D¢ Og ®¢ Tg
Cel 0o O@ ¢

pseudo + compens. pseudo+comp. onsite AE-onsite

@ This general scheme applies to all operators.

@ Sometimes one may choose to include only parts of the PAW
expressions.

lazy: only implement plane wave part (GW, ...)
efficient: physics of localized orbitals; only spheres (LDA+U,
DMFT, ..., )
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